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5[65-01] Numerical analysis, an introduction, by Walter Gautschi, Birkhaiuser, 
Boston, 1997, xiii + 506 pp., 24cm, hardcover, $64.50 

This textbook for an introductory course on numerical analysis on the upper un- 
dergraduate level is off the beaten track in several respects. First of all, it interprets 
the word analysis in its title in its literal sense; the material has been restricted 
to areas form mathematical analysis so that there is no treatment of numerical 
linear algebra. On the other hand, numerical ordinary differential equations cover 
nearly half of the volume. Secondly, while a scan of the Table of Contents seems 
to indicate a simple-minded approach, the actual reading of whatever chapter re- 
veals a host of details in the theorems, remarks, observations, etc., which are of 
interest even to the expert. This aspect is further expanded by "Notes" following 
each chapter, which cover some of the history as well as further developments, with 
handy pointers to references. Also, the text manages to keep the balance between 
an intuitive, readily understandable style of presentation and careful, precise formu- 
lations. Finally, each chapter is followed by "Exercises and Machine Assignments" 
of an unusual multitude and variety. They will constitute a welcome and valuable 
source of material also for those who teach from a different text. 

Altogether, the volume reflects the insight and the experiences of a lifetime's oc- 
cupation with numerical computation and with teaching numerical analysis, which 
is a never-ending challenge. I believe that it will give the students the right attitude 
toward the science and art of numerical computation. 

HANS J. STETTER 

6[65-01] Afternotes goes to graduate school, lectures in advanced numerical anal- 
ysis, by G. W. Stewart, SIAM, Philadelphia, PA, 1998, xii + 245 pp., 251 cm, 
softcover, $35.00 

This monograph consists of a set of notes on numerical analysis written shortly 
after the author lectured in a graduate course given at the University of Mary- 
land. The notes consist of 26 sections corresponding to the lectures and the topics 
presented fall into four categories: Approximation (9 lectures, 74 pp.), Splines (2 
lectures, 20 pp.), Eigensystems (7 lectures, 59 pp.), and Krylov sequence methods 
(6 lectures, 44 pp.), with two additional lectures giving some classical results on 
linear and nonlinear iterative methods. Stewart's presentation is intuitive and rapid 
but, at the same time, clear with considerable attention paid to motivation of a 
particular approach or algorithm. He rarely gives a proof in complete detail, but 
instead enough detail is provided about the essential ideas that a mature reader 
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can fill in between the lines. The careful reader will definitely get his/her hands 
dirty in the process. 

There is a useful index and bibliography to the textbook literature. The book 
contains no exercises or examples and hence is best suited as a reference or supple- 
ment for a graduate level course in numerical linear algebra. 

The book begins with a discussion of two simple, concrete exanmples that lead 
to L2 and Loo approximation problems. From this Stewart extracts their common 
features and proceeds to develop the notion of best approximation in a normed 
vector space. The second of these problems concerns best approximation in C[O, 1]. 
In this context Bernstein polynomials are developed and used in a sketch of the 
proof of the classical Weierstrass approximation theorem. To develop a practical 
means of solving (or more accurately, nearly solving) the Loo best approximation 
problem, a strategy is developed based on the de la Vallee Poussin theorem and 
characterization of the best polynomial approximation in terms of sign alternation 
at points of worst error. The method that emerges consists in using Chebyshev 
polynomials and economization of power series. 

The discrete and continuous least squares approximation problems are treated 
in several lectures where the author introduces orthogonal polynomials and their 
three-term recurrence, the Gram-Schmidt process and its more stable modification, 
the QR factorization of a full rank matrix, Householder matrices and their role 
in constructing the QR decomposition of a general rectangular matrix. There is 
an extensive discussion/analysis wherein the solution of the normal equations is 
compared to the use of the QR decomposition to solve for the best least-squares 
approximation. This analysis deals with three important practical considerations: 
efficiency, conditioning, and accuracy. In assessing the condition of the two ap- 
proaches, the author gives a backward (ala Wilkinson) error bound wherein the 
perturbation in the computed solution, due to roundoff, is projected back into a 
perturbation on the data in the original problem. I won't divulge the conclusion- 
you'll have to read the book to find out which method wins! 

The two lectures on linear and cubic splines are fairly standard textbook fare 
with the exception of the local error estimation for cubic splines. 

Professor Stewart is a leading expert in and developer of algorithms for numerical 
linear algebra. This expertise comes to the fore in the last half of the book, which 
is devoted to the two main problems of linear algebra. 

The eigenvalue problem is introduced via the problem of solving a line4ar system 
of differential equations. Following this, the author develops some facts needed in 
the development of numerical algorithms, such as similarity, the Schur decompo- 
sition to triangular form, the real Schur block triangular form, as well as the less 
practical Jordan canonical form. Considerable attention is paid to the power and 
inverse power (with shift) methods leading up to the QR algorithm with shift. Since 
the convergence of the QR algorithm is known only under special circumstances, 
Stewart gives a local error analysis under certain simplifying assumptions. Gradu- 
ally, the author leads the reader to a viable method for computing eigenvalues of 
a general complex matrix A; namely, reduction of A (by Householder transforma- 
tions) to upper Hessenberg form followed by application of the QR algorithm with 
Rayleigh quotient shifts. Following this, he deals with the case where A is real and 
utilizes Arnoldi reduction to establish the unitary similarity of A to an unreduced 
Hessenberg matrix. The actual computations avoiding complex arithmetic are done 
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using a double shift QR step. The section on eigensystems culminates with the pre- 
sentation of the singular value decomposition (SVD) and its computation using the 
QR algorithm. An application of the SVD is the determination of the rank of a 
matrix (an ill-posed problem). The little known theorem of Schmidt is presented 
and can be used to lend credence to the estimated rank provided by the computed 
SVD. 

It is Stewart's contention that, in discussing the solution of large sparse linear 
systems by iterative methods, the emphasis should be placed on Krylov sequence 
methods such as the method of conjugate gradients and its preconditioned variants. 
Consequently, the classical Jacobi and Gauss-Seidel iterations are treated briefly in 
the penultimate lecture of the book. 

The basic idea of Krylov sequence methods is to consider approximation by 
vectors in Sk = span{u, Au, A2U,... , Ak-lu}. Clearly this space is related to the 
power method for A, and the vectors in {U, Au, A2U, ... , Ak-1u} tend toward the 
dominant eigenvector of A. Stewart shows how one can orthogonalize the Krylov 
vectors using Arnoldi reduction resulting in a scheme, Arnoldi's method, for deter- 
mining an approximate eigenpair for A. He also discusses a variant of this method 
using implicit restarting that effectively eliminates unwanted eigenvalues. For sym- 
metric matrices the Arnoldi decomposition simplifies (upper Hessenberg becomes 
tridiagonal) and results in the famous Lanczos algorithm. In Stewart's opinion this 
method, suitably modified using selective orthogonalization, is the method of choice 
for large sparse symmetric eigenproblems. 

The introduction to Krylov methods for solving symmetric positive definite lin- 
ear systems, Ax = b, is given by the method of steepest descent. This gives a 
sequence {Xk} with Xk+1 = Xk + aYksk where the stepsize ak and direction Sk are 
chosen to minimize bo(x) = lxTAx - xTb. Stewart then considers the following 
related problem: given a set {Si, S2, .. , Sk} of linearly independent directions, set 

Xk+1 = x1 + Ei>=1 akSk and seek the coefficients such that bo(xi + EZ =1 akSk) 

is minimized. The result is that, at the minimum, the residual is orthogonal to 
span{sl, S2)... sk}. To effectively compute this minimizing vector one uses A- 
conjugate directions and the result is the method of conjugate gradients. Stewart 
does a rather complete error analysis of the method of conjugate gradients and 
establishes a well-known error bound in the A-norm. This error bound reveals that 
the condition number of A is the key to the rate of convergence of the method. It 
is also shown that the method is error reducing in the Euclidean norm. 4 

To speed the convergence of the conjugate gradient method, one uses a positive 
definite preconditioner M and considers the problem M-1Ax = M-1b. Clearly the 
matrix M-1A is no longer symmetric and thus the author considers the equivalent 
system M-1/2AM-1/2y = M-1/2b, where y = M112x. Since M1/2 is generally 
unavailable, the algorithm for the equivalent system must eventually be recast to 
see that M1/2 is not needed. But there is another approach that eliminates any 
discussion of M1/2. One simply applies the conjugate gradient method directly to 
M-1Ax = M-1b with respect to a different inner product, namely [., ] = (M., .), 

where (.,) is the usual Euclidean inner product. In this inner product M-1A is 
symmetric positive definite and the previously established error analysis applies 
verbatim. The determination of a suitable preconditioner is not easy and the au- 
thor considers in detail only incomplete LU factorization. It is demonstrated that 
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incomplete LU factorization is always possible for invertible diagonally dominant 
matrices, and the algorithm is presented. 

For those who teach courses in numerical linear algebra or those who are simply 
interested in the subject, this is a well-written modern book that deserves a place 
on the office bookshelf. The book is packed with information and insights from one 
of the leaders in the field. 

J. THOMAS KING 

DEPARTMENT OF MATHEMATICAL SCIENCES 
UNIVERSITY OF CINCINNATI 

CINCINNATI, OH 45221-0025 

7[65-02, 65F10] Iterative methods for solving linear systems, by Anne Green- 
baum, Frontiers in Applied Mathematics 17, SIAM, Philadelphia, PA, 1997, 
xiii + 220 pp., 251 cm, softcover, $41.00 

This is a stimulating book. It describes recent developments in the theory of 
iterative techniques for solving large sparse systems of linear equations. The book 
is not a complete survey; Axelsson's treatise [1] is more definitive in this respect. 
Instead, as the author points out in the preface, "With this book, I hope to discuss 
a few of the most useful algorithms and the mathematical principles behind their 
derivation and analysis... I have tried to include the most useful algorithms... 
and the most interesting analysis from both a practical and a mathematical point 
of view." This selective treatment of the theory is what sets Greenbaum's book 
apart. 

The body of the book is preceded by an introductory chapter containing a concise 
overview of the state of the art. The remainder of the book is split into two parts. 
Chapters 2 through 7 form the first part of the book and describe "basic" Krylov 
subspace methods. The second part of the book (Chapters 8 through 12) is devoted 
to preconditioning aspects. 

The distinction between Hermitian/symmetric and non-Hermitian/nonsym- 
metric linear systems is made obvious to the reader in Chapter 1, and is rein- 
forced in Chapters 2 and 3 ("Some iteration methods" and "Error bounds for CG, 
MINRES and GMRES"). When solving (real-) symmetric systems, Krylov methods 
like MINRES (or CG in the positive definite case) generate a best approximation 
from a subspace of increasing dimension with a fixed computational effort at every 
iteration. Furthermore, the concept of preconditioning has a sound theoretical ba- 
sis, since the convergence is completely determined by the eigenvalue distribution 
of the coefficient matrix. The explanation of why the convergence of CG/MINRES 
is described by the eigenvalue spectrum even in the presence of rounding errors is 
outlined in Chapter 4, "Effects of finite precision arithmetic". These fundamental 
results are an outcome of the author's research, and their inclusion in a textbook 
for the first time is very valuable. The inherent difficulty in the nonsymmetric/non- 
Hermitian case is unravelled in Chapter 6, which provides the answer to the ques- 
tion, "Is there a short recurrence for a near-optimal approximation?" The upshot 
is a plethora of "open problems" in the nonsymmetric case; in particular, the op- 
timal choice of Krylov subspace method is problem specific, and preconditioning 
has a very limited theoretical basis. (A consequence of the latter is that the book 
has little to offer practitioners interested in solving problems other than the model 


